
Pendant longtemps, on s’est rassuré en pensant que l’IA toucherait surtout les métiers de la tech. Développeurs, data scientists, peut‑être quelques analystes, pour le reste, sentiment de relative sécurité. Ce récit se fissure, et le projet Iceberg du MIT le montre très clairement. Ce que nous regardions jusqu’ici n’était pas l’ensemble, juste la partie émergée.
Le MIT, en collaboration avec le Oak Ridge National Laboratory, a mené une simulation d’ampleur, suivant 151 millions de travailleurs américains à travers plus de 32 000 compétences et 923 professions. L’objectif n’était pas de prédire 2035 ou 2040, mais de poser une question bien plus inconfortable : qu’est‑ce que l’IA pourrait automatiser dès maintenant, avec les technologies déjà disponibles ?
La réponse est saisissante. D’après Project Iceberg, l’IA peut techniquement remplacer environ 11,7 % de la main‑d’œuvre actuelle aux États‑Unis. Cela représente à peu près 1,2 trillion de dollars de salaires. Il ne s’agit ni d’un risque théorique ni d’un horizon lointain. D’un point de vue strictement technique, la capacité existe déjà.
Ce qui rend le tableau encore plus intéressant, c’est l’écart entre ce que l’IA peut faire et ce qu’elle fait effectivement. En observant seulement les déploiements reels, là où l’IA est utilisée au quotidien le MIT estime qu’environ 2,2 % des emplois semblent touchés. Ils appellent cela le “Surface Index”. En surface, la situation paraît gérable. En dessous, s’étend une vaste couche de travail cognitif potentiellement automatisable et encore peu exploitée.
Cette couche cachée englobe des rôles que beaucoup considèrent encore “à l’abri” : finance, administration de santé, opérations, coordination, services professionnels. Ces métiers reposent fortement sur l’analyse, la documentation, la planification et la prise de décision structure, exactement le type de tâches que les systèmes d’IA modernes commencent à bien maîtriser.
Alors, qu’est‑ce qui a changé ? En un mot : l’accès.
Jusqu’à récemment, les assistants IA restaient en dehors de nos environnements de travail réels. Ils savaient discuter, résumer, générer du texte, mais n’avaient pas accès à votre agenda, vos outils de projet, vos bases de données internes ou vos workflows. Cette barrière a commencé à tomber fin 2024 avec l’introduction du Model Context Protocol, ou MCP.
MCP permet aux modèles d’IA de se connecter directement aux outils et aux sources de données via des interfaces standardisées. Ce simple basculement a tout débloqué : des agents IA qui non seulement conseillent, mais agissent. En mars 2025, on dénombrait plus de 7 900 serveurs MCP en production. L’IA peut désormais consulter des agendas, réserver des salles, envoyer des invitations, mettre à jour des plans de projet, rapprocher des données et générer des rapports de façon autonome.
Project Iceberg suit tout cela en temps réel, en mettant ces capacités en correspondance directe avec les compétences du marché du travail. Et c’est là que les données prennent un tournant inattendu.
La plus grande vulnérabilité ne se concentre pas dans la Silicon Valley. Elle apparaît nettement dans des États du “Rust Belt” comme l’Ohio, le Michigan et le Tennessee. Non pas parce que les usines regorgent de robots, mais parce que les fonctions de support cognitif autour de l’industrie (analyse financière, coordination administrative, conformité, planification) sont hautement automatisables. Des emplois qui semblent stables en surface, mais qui se trouvent en plein sous‑marin de l’iceberg.
Les experts ne balaye nt pas ces résultats d’un revers de main en les qualifiant d’alarmistes. Une autre étude, portant sur 339 “superforecasters” et spécialistes de l’IA, estime qu’à l’horizon 2030, environ 18 % des heures de travail seront assistées par l’IA. Un chiffre étonnamment cohérent avec l’exposition technique actuelle de 11,7 % mise en avant par le MIT, ce qui confère au projet Iceberg une crédibilité directionnelle plutôt qu’un caractère spéculatif.
Ce qui frappe surtout, c’est l’usage qui est fait de ces informations. Project Iceberg n’est pas qu’un rapport de recherche, c’est un système d’alerte précoce. Des États s’en servent déjà pour repérer les compétences à risque et investir dans la reconversion avant que les déplacements d’emplois ne se produisent. Le focus se déplace des intitulés de poste vers des grappes de compétences : quelles parties d’un rôle sont automatisables, et lesquelles nécessitent encore jugement humain, créativité, empathie ou travail relationnel.
La grande question, désormais, n’est plus de savoir si l’IA va transformer le travail. Ce point est acquis. La vraie question est de savoir si les systèmes, les institutions et les pouvoirs publics bâtissent assez vite l’infrastructure pour accompagner quelque 21 millions de travailleurs potentiellement déplacés. L’iceberg est déjà là. Ce qui compte, c’est de savoir si nous manœuvrons ou si nous attendons l’impact.
